Eric J Ma's Website

Test All Your Data!

written by Eric J. Ma on 2015-06-24


On Monday, I gave my first ever lighting talk at the Boston Python meetup. Though I was kinda nervous right before the talk, overall, I found it to be really fun! My main message was that we should write tests for our data when doing data analysis.

What’s the benefits?

  1. Things that should be true about the data at this point, and in the future, will be formally coded in an automatically runnable script.
  2. If the data ever needs to change, this serves as an automated way of having a sanity check in place prior to running data analysis.
  3. If the data ever changes inadvertently, we have tests to ensure data integrity.

My slides are attached here, hopefully they’ll come in handy to someone, someday. Or maybe to you, my reader. :-)

Q&A

From memory, these were some of the questions that I fielded right after the talk.

Q: What happens if your data cannot fit in memory? A: Try reading in just a random subset of the data, just the head, just the tail, or streaming it row/line by row/line.

Q: When do you know you have enough tests written before you can begin doing other things, such as modelling? A: You don’t. Just keep writing them. You’ll never have enough tests. You will discover more assumptions about your data as you go along, which you can code up in your test script.

Q: What’s your general workflow for writing tests? A: Data analysis occupies a big chunk of my time. If I am thinking about the data, I will realize I have assumptions I’m making about the data. At those moments of realization is the best time to jot down the assumption to be encoded. Sometimes the epiphanies come in the shower or while sitting on the toilet bowl or eating a burrito. Have a notebook handy :).

Prior to embarking on the data analysis journey, I will run py.test. Following data analysis, I will run those tests one more time. At the end of adding in a test, I will also run py.test. It’s now become a reflex.


Cite this blog post:
@article{
    ericmjl-2015-test-data,
    author = {Eric J. Ma},
    title = {Test All Your Data!},
    year = {2015},
    month = {06},
    day = {24},
    howpublished = {\url{https://ericmjl.github.io}},
    journal = {Eric J. Ma's Blog},
    url = {https://ericmjl.github.io/blog/2015/6/24/test-all-your-data},
}
  

I send out a newsletter with tips and tools for data scientists. Come check it out at Substack.

If you would like to sponsor the coffee that goes into making my posts, please consider GitHub Sponsors!

Finally, I do free 30-minute GenAI strategy calls for teams that are looking to leverage GenAI for maximum impact. Consider booking a call on Calendly if you're interested!