Eric J Ma's Website

Consolidate your scripts using click

written by Eric J. Ma on 2018-03-30 | tags: programming code snippets scripting python data science


click is amazing! It's a Python package that allows us to add a command-line interface (CLI) to our Python scripts easily. This blog post is a data scientist-oriented post on how we can use click to build useful tools for ourselves. In this blog post, I want to focus on how we can better organize our scripts.

I have found myself sometimes writing custom scripts to deal with custom data transforms. Having them refactored out into a library of modular functions can really help with maintenance. However, I still end up with multiple scripts that might not have a naturally logical organization... except for the fact that they are scripts that I run from time to time! Rather than have them scattered in multiple places, why not have them put together into a single .py file, with options that are callable from the command line instead?


Here's a template for organizing all those messy scripts using click.

import click
def main():

def script1():
    Makes stuff happen.
    # do stuff that was originally in script 1
    click.echo('script 1 was run!')  # click.echo is recommended by the click authors.

def script2():
    """Makes more stuff happen."""
    # do stuff that was originally in script 2.
    print('script 2 was run!')  # we can run print instead of click.echo as well!

if __name__ == '__main__':

How to use

Let's call this new meta-script, and make it executable.

$ chmod +x

To execute it at the command line, we now a help command for free:

$ ./ --help

  --help  Show this message and exit.

  script1  Makes stuff happen.
  script2  Makes more stuff happen.

We can also use just one script with varying commands to control the execution of what was originally two different .py files.

$ ./ script1
script 1 was run!
$ ./ script2
script 2 was run!

Instead of versioning multiple .py files, we now only have to keep track of one file where all non-standard custom stuff goes!


Here's what's going on under the hood.

With the decorator, we have exposed the main() function from the command line as a "group" of commands that are callable from the command line. What this does is then "wrap" the main() function (somehow), such that now it can be used to decorate another function (in our case, script1 and script2) using the decorator syntax @main.command().


  • Consolidate disparate Python scripts into a single .py file, wrapping them inside a callable function.
  • Use click to expose them to the end-user (yourself, or others) at the command line.

I send out a newsletter with tips and tools for data scientists. Come check it out at Substack.

If you would like to sponsor the coffee that goes into making my posts, please consider GitHub Sponsors!

Finally, I do free 30-minute GenAI strategy calls for organizations who are seeking guidance on how to best leverage this technology. Consider booking a call on Calendly if you're interested!