Keep your notebooks organized with logical categories

In my experience, there are three types of notebooks that get written.

Prototyping notebooks go under notebooks/

These notebooks are drafting grounds for "production" code. We use Jupyter notebooks as an experimentation playground. (see: Use Jupyter as an experimentation playground). They do not need to be kept running reliably/reproducibly, and essentially are considered "disposable".

If you are collaborating with colleagues on a project, you can categorize notebooks by their primary author. For example, if I am working with Lily and Arkadij on a project, we can each get our own "user spaces" in there while agreeing not to touch each other's notebooks:

project/
- notebooks/
  - lily/     # lily's notebooks go here
  - arkadij/  # arkadij's notebooks go here
  - eric/     # eric's notebooks go here

Documentation notebooks go under docs/

These notebooks are written in the original spirit of Jupyter notebooks. They combine prose, code and code-generated figures. They contain a narrative, a data story. One may say they are "production", in that someone will read them and act on them. They need to be reliably executed from top-to-bottom, usually in a continuous integration system. (see: Build a continuous integration pipeline for your source) using MkDocs and mknotebooks.

For these notebooks, we might choose to keep them in the docs/ directory:

project/
- docs/
  - some_notebook.ipynb

Application notebooks go under app/

Sometimes you might opt to use voila to build front-end applications for those whom you serve. This is a convenient option because you don't have to jump out of a Jupyter context if you're already in there. These notebooks are considered "production" as well, however because they are code embedded in JSON, they are more difficult to diff with git.

For these notebooks, you probably want to keep them in a directory named app, where anything that becomes front-facing to the clients we serve are stored:

project/
- apps/
  - notebook_app.ipynb

Get prepped per project

Treat your projects as if they were software projects for maximum organizational effectiveness. Why? The biggest reason is that it will nudge us towards getting organized. The "magic" behind well-constructed software projects is that someone sat down and thought clearly about how to organize things. The same principle can be applied to data analysis projects.

Firstly, some overall ideas to ground the specifics:

Some ideas pertaining to Git:

Notes that pertain to organizing files:

Notes that pertain to your compute environment:

And notes that pertain to good coding practices:

Treating projects as if they were software projects, but without software engineering's stricter practices, keeps us primed to think about the generalizability of what we do, but without the over-engineering that might constrain future flexibility.

Set up your project with a sane directory structure

Why setup your project with a sane directory structure

Doing so will help you quickly and easily find things. This is crucial when navigating your data project. If you don't do so, you will likely end up being utterly confused as to where things are located.

What does a sane directory look like

I am going to show you one particular example, but you can adapt it to however you like.

|- informative-project-name-here/
   |- data/          # never add anything here into source control
   |- notebooks/     # divide by usernames if needed
   |- scripts/       # basically for automation
   |- importable_name/
      |- __init__.py
      |-...
   |- tests/      # test suite
   |- README.md
   |- pyproject.toml # use this, not setup.py!
   |-...

The purpose of each directory is annotated in each line. That said, you can find relevant information in the following pages:

Build a continuous integration pipeline for your source

What is a continuous integration pipeline

If you end up writing software (see: Place custom source code inside a lightweight package), especially code that you might need to depend on in the future, having a test suite is essential (see: Write tests that test your custom code). However, the execution of the tests still needs to be triggered by you.

A continuous integration (CI) pipeline solves that problem for you. When configured correctly, on every commit you make to your codebase, it will automatically:

  1. Build an environment that you configure
  2. Execute all tests associated with your source code inside that environment

You can think of a continuous integration pipeline as a programmable bot that runs commands that you've configured it to run, except it does so automatically on every single commit.

Why write a continuous integration pipeline

You can configure a CI pipeline to automatically run code checks, thus preventing you from breaking something that you previously wrote on which you also depend.

You can also configure a CI pipeline to continuously run analyses that are crucial to the project. You essentially feed the CI pipeline the commands needed to re-run analyses that are important and deposit the results in a location that you get to configure.

If you don't build a CI pipeline, then you'll miss out on the benefits of automatically having a bot check your work for breakages.

How to build a CI pipeline

There's a myriad of CI providers. Here are a few examples:

  • Travis CI
  • Azure Pipelines
  • GitHub Actions
  • CircleCI

Because of the myriad of options available, it'd be futile to give you a tutorial. Instead, I'll show you what's common between them.

Firstly, you begin by writing a configuration file that lists out all of the build steps. Typically it's a YAML file (Travis CI, Azure Pipelines, and GitHub Actions all use this), but sometimes you'll have other formats, such as a Jenkinsfile for Jenkins. This file is, by convention, usually placed in the root of your project repository, but you can also opt to put it in another location if that helps with file organization.

Most commonly, the build steps will be nothing more than bash commands. For example, in Travis CI, each build step in the YAML file is a bash command used to execute the pipeline. Sometimes, to take advantage of the user-friendly UI elements provided by the CI provider, you'll be asked to supply a slightly more complex YAML file. There, you can group build steps into logical higher-order steps and provide human-readable descriptions for them; these get paired with a web UI that lets you easily debug a step when something goes wrong.

Secondly, there'll be a website (sometimes called a "control plane" in cloud jargon) where you go to configure the continuous integration bot. There, you'll typically configure:

  1. The location of the Git repository
  2. The exact configuration file(s) that contains the build steps.

If your company has set up internal systems slightly differently, you'll probably have to ask your IT department's DevOps team for help to accomplish your task. Ask nicely; they invest tons of time building out something usable, but sometimes the data scientist's level of expertise with these systems, which is usually beginner, is out of their radars.

Use Jupyter as an experimentation playground

What are the use cases for Jupyter?

I use Jupyter notebooks in the following ways.

Firstly, I use them as a prototyping environment. They are wonderful, because I can hold the state of a program in memory and interactively modify it until I get what I need out of the program. (This especially saves on time spent re-computing things.)

Secondly, I use Jupyter as an authoring environment for interactive computational teaching material. For example, I structured Network Analysis Made Simple as a series of Jupyter notebooks.

Finally, on occasion, I use Jupyter with ipywidgets and Voila to build out dashboards and interactive applications for my colleagues.

How do you get Jupyter?

Get Jupyter installed in each of your environments, by including it in your environment.yml file. (see: Create one conda environment per project)

Doing so is based on advice I received at SciPy 2016, in which one of the Jupyter developers strongly advised against "global" installations of Jupyter, to avoid package conflicts.

How do you get Jupyter to recognize your environment's Python?

To get Jupyter to recognize the Python interpreter that defined by your conda environment (see: Create one conda environment per project), you need to make sure you have ipykernel installed inside your environment. Then, use the following command:

export ENV_NAME="put_your_environment_name_here"
conda activate $ENV_NAME
python -m ipykernel install --user --name $ENV_NAME

How do you launch Jupyter?

Newcomers to Anaconda are usually spoonfed the GUI, but I am a proponent of launching Jupyter from the terminal because doing so makes us fully aware of our environment, including the environment variables. (see the related: Create runtime environment variable configuration files for each of your projects and Take full control of your shell environment variables)

To launch Jupyter:

  1. Open your shell
  2. Navigate to your project directory
  3. Activate your conda environment
  4. Then launch Jupyter Lab: jupyter lab

In shell terms:

cd /path/to/project/directory
conda activate $ENV_NAME
jupyter lab